Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows

نویسندگان

  • Alexander Gorodnik
  • Frédéric Paulin
چکیده

In this paper, we study the distribution of integral points on parametric families of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set of integral points on each such variety consists of finitely many orbits of arithmetic groups, and we establish an asymptotic formula (on average) for the number of the orbits indexed by their Siegel weights. Our arguments use the exponential mixing property of diagonal flows on homogeneous spaces. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardy-Littlewood varieties and semisimple groups

We are interested in counting integer and rational points in affine algebraic varieties, also under congruence conditions. We introduce the notions of a strongly Hardy-Littlewood variety and a relatively Hardy-Littlewood variety, in terms of counting rational points satisfying congruence conditions. The definition of a strongly Hardy-Littlewood variety is given in such a way that varieties for ...

متن کامل

Power-free Values of Polynomials on Symmetric Varieties

Given a symmetric variety Y defined over Q and a non-zero polynomial with integer coefficients, we use techniques from homogeneous dynamics to establish conditions under which the polynomial can be made r-free for a Zariski dense set of integral points on Y . We also establish an asymptotic counting formula for this set. In the special case that Y is a quadric hypersurface, we give explicit bou...

متن کامل

Affine Embeddings of Homogeneous Spaces

Let G be a reductive algebraic group and H a closed subgroup of G. An affine embedding of the homogeneous space G/H is an affine G-variety with an open G-orbit isomorphic to G/H . The homogeneous space G/H admits an affine embedding if and only if G/H is a quasi-affine algebraic variety. We start with some basic properties of affine embeddings and consider the cases, where the theory is well-de...

متن کامل

Stable Reductive Varieties I: Affine Varieties

0. Introduction 1 1. Main definitions and results 3 2. General criteria 6 2.1. Seminormality and connectedness of isotropy groups 6 2.2. Finiteness of number of orbits and group–like condition 9 3. Orbits in stable reductive varieties 11 3.1. Isotropy groups 11 3.2. Algebras of regular functions 14 4. Reductive varieties 18 4.1. Classification 18 4.2. Associated stable toric varieties 20 5. Sta...

متن کامل

Harmonic Analysis, Ergodic Theory and Counting for Thin Groups

For a geometrically finite group Γ of G = SO(n, 1), we survey recent developments on counting and equidistribution problems for orbits of Γ in a homogeneous space H\G where H is trivial, symmetric or horospherical. Main applications are found in an affine sieve on orbits of thin groups as well as in sphere counting problems for sphere packings invariant under a geometrically finite group. In ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013